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Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 
OHE, UK 

Received 27 June 1990 

Abstract .  We analyse the growth probability distribution for diffusion limited ag- 
gregates ( D L A )  in terms of its j ( a )  curve, with f and a computed independently as 
generalized entropies, using data from 10 clusters of 10000 to 100000 particles. The 
growth probability is obtained by solving the Laplace equation numerically with a hi- 
erarchical method which improves accuracy and speed. Two additional methods are 
used to compare results for D L A  clusters and for a few objects with simple geometry 
and known j ( a )  spectrum. These comparisons reinforce our results for the part of 
the D L A  spectrum corresponding to q 2 0. They also bring to light some unexpected 
features for q < -0.1, which suggest a non-universality of the scaling exponents in 
this region in two dimensions. 

1. Introduction 

Physical systems showing self-similarity have recently become the focus of much atten- 
tion. Such systems arise in many areas of physics, and include strange attractors for 
dissipative non-linear systems (Halsey e t  ul  1986a), models of turbulence (Mandelbrot 
1978, Procaccia 1984), percolation clusters (de Arcangelis e t  a1 1985, Rammal e t  a1 
1985), and kinetic aggregation clusters (Witten and Sander 1981, Jullien and Kolb 
1984, Brown and Ball 1985). It has become clear that  a simple description in terms of 
a single fractal dimension is not enough to  characterize these systems and the concept 
of ‘multifractal’ has been introduced. 

Given a measure defined on an object C, the f ( a )  spectrum describes the dis- 
tribution of singularities of the measure. Objects with non-trivial f ( a )  are called 
multifractal (Mandelbrot 1982). 

f ( a )  spectra have been calculated recently for a variety of systems, including all 
those mentioned above. Although the interpretation of these spectra is still the sub- 
ject of much current work,  it is apparent that  they can provide much more information 
than the mere fractal dimension of an object, and in particular lead to  a better under- 
standing and a rigorous characterization of the dynamical properties of such objects. 

Here we calculate the f ( a )  spectrum of the growth probability distribution of 
diffusion limited aggregates. A new definition off  and a is introduced, which provides 
an interpretation of the spectrum in terms of an information dimension and also 
has some numerical advantages. The numerical solution of the Laplace equation is 
obtained by a new method which improves accuracy and speed. 

0305-4470/90/225295+13$03.50 @ 1990 IOP Publishing Ltd 5295 
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2. Theory 

In order to obtain an f(a) spectrum we need a measure p defined over a support C. 
A typical and relevant example is the hit or growth probability distribution over a 
diffusion limited aggregate (DLA) (Witten and Sander 1981). 

Each point z on a DLA can be assigned a probability p ( z )  that growth will next 
occur there. The growth probability p can be defined in many ways. Here the analogy 
with the dielectric breakdown model (Niemeyer e t  a1 1984) is used to  give 

where 9(2) is the potential field obtained by solving the Laplace equation A+ = 0 
with boundary conditions corresponding to an equipotential cluster (4 = 0) and an 
equipotential outer boundary (4 = 1) at  infinity (in practice the numerical calculations 
were performed using an outer boundary with a radius greater than five times the 
maximum dimension of the cluster along either axis). 

In general the support of the measure, C, will have some overall length-scale R and 
we define partitions on C of scale b 5 R by 'coarse-graining' the space into 'boxes' of 
linear size b .  Then each box can still be assigned a total measure p associated with 
all parts of the support lying in the box. 

The moments (of order q) of the probability measure are defined by 

boxes 

where (X), denotes the average taken over all boxes with weighting p ,  i.e. Cboxes p X ,  
and the probability measure is normalized to 1: Cboxes ,U = 1. For a variety of systems 
(including the above DLA example) the moments have been found to obey the following 
scaling laws: 

where the exponent -r(p) is a monotonically increasing function of q.  By using the 
Legendre transform f ( a )  of p and r(q) (Halsey el a1 1986b) 

d r  
a = -  f(.) = qa - 7 dq 

the scaling laws can be recast in a new form, giving, in the limit of large R / t  

(4) 

which has the simple histogram interpretation that (R/b)'(") boxes have probability 
measure p = (R/b)-". 

For DLA and other multifractal structures f ( a )  has been calculated both by com- 
puting the moment exponent r(q) and also by scaling the observed distribution of p 
values (see for example the review by Meakin 1988). The histogram result (5) has been 
widely interpreted as meaning that (in the limit of large R / b )  the set of boxes with 
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p = (R/b)-a lie on a fractal of dimension f ( a ) .  This interpretation is not rigorously 
proven, and has been qualified by Blunt (1989) 

We introduce here a definition of f as an information dimension. We start  from 
the definition 

and apply the Legendre transform directly to  yield first 

where we have assumed that d/dq and Cboxes commute. Defining for each q a new 
‘measure’ Q = pq/ Cboxes pq we then have 

a 
ax a = -(lnp)* 

where the average is over all boxes with weighting Q ,  as defined earlier. From this we 
can reconstruct also 

f =  -(lnQ)g a = - a Q l n Q  

ax ax boxes 
(9) 

which can be formally identified as the information dimension of the ‘measure’ Q .  The 
only qualification is that  Q has a non-standard law of addition, in the sense that Q 
for a large box is not in general the sum of its values for a complete set of sub-boxes. 
Q is therefore not strictly a measure. 

The results (8) and (9) also have immediate practical use in clarifying some known 
results: 

(1) for q = 1 Q E p ,  so f = a ;  
(2) for q = 0 Q = constant, so f is the information dimension of the support of 

the measure. 
These results also appear to be a reasonably practical way of computing f and a at  

fixed q directly, without either the numerical differentiation inherent in the Legendre 
transform of T(q), or the compromise of interpolating a numerical histogram. 

3. Results 

Values o f f  and a, for q in the range [-1,5], were calculated using equations (8) and (9) 
with data  obtained from 10 different clusters. The clusters were of modest size (10 000, 
30000, 50000 and 100000 particles), grown on a square lattice with a (randomly 
selected) proportion E = 0.414 of second neighbour sites allowed to  stick new particles 
as well as all first neighbour ones. This tunes out observable square lattice bias u p  to 
a t  least the cluster size 100000, analogously to other studies (Barker and Ball 1990, 
Ball and Brady 1985). 

The Laplace equation was solved numerically by iteration on the square lattice, 
with a new method which makes use of the successive partitions of size b later needed 
for the evaluation o f f  and a. This has proved superior to  the usual iteration procedure 
both in terms of precision and of computer time. The number of iterations used was 
varied depending on the size ot the cluster in such a way as to ensure a relative error 
of not more than - 1%. 
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Figures 1 and 2 show plots of A = (lnp)Q and B = (1nQ)Q against ln(b/R) for 
these clusters: their slopes should give CY and f respectively for the given q. 

The box sizes b were scaled by a nominal expected cluster radius R = with 
D = 1.70, which gave as good a data superposition as could statistically be expected. 
The lack of prefactor in this choice is irrelevant to the superposition, which is also 
found not to be sensitive to taking a value for D elsewhere in the range 1.67 to 1.71. 
The radius of gyration R G  was also calculated for all clusters and the values obtained 
were also used to give plots of A and B against h(b/RG), which were compared with 
those obtained using the expected radius defined above. No significant difference was 
found. As a typical example figure 3 shows plots obtained with different choices of 
radii in the case q = 0. 

q=o.o q-0.0 

0 0 

- 20 -20 
a a 

- 40 - 40 

- 8  -6 -4 - 2  0 2 - 6  - 4  - 2  0 2 

q=o.o q-0.0 

- 2 0  
-8 - 6  -4 - 2  0 2 

40- 
-6 - 4  - 2  0 2 

Figure 3. Graphs showing the compaison between the determination of a(q) and 
f ( q )  from of plots of A and B against ln(b/R) when R is chosen as R = " I D ,  or as 
the radius of gyration R = R,. In this example q = 0 and we use the same choice of 
clusters as in figures 1 and 2 .  

The data for A and B show, for all clusters and all q 2 -0.1, good scaling su- 
perposition for all but the smallest box sizes ( b  = 1,2), with a fairly clear power law 
giving way to finite cluster size effects at the largest boxes. A qualification is needed 
with respect to the results for A with q < 0.5. All the plots in this range show two 
distinct slopes. This feature becomes more obvious as q becomes negative and larger. 
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One of the slopes is given by the da ta  obtained with the first five coarsest levels of 
resolution (five largest boxes), and is fairly constant throughout at about 1.6 (note 
tha t  this value is not far from the value of a at q = 0.5). The  other slope is given by 
the remaining da ta ,  obtained with increasingly finer resolution (smaller boxes), and 
is different at each q .  The  most obvious explanation for this result stems from the  
observation tha t  as q becomes more negative equation (8) is increasingly dominated 
by the smallest values of p. A coarse partition (large boxes) is bound to average out 
small values of the probability growth. This has no effect for larger values of q ,  but 
causes all significant terms in equation (8) to be lost when q is small, thus producing 
a spurious constant slope. 

It is well known tha t ,  since f(a) is dominated by small probabilities for low q ,  all 
the results obtained in this range are subject to greater numerical errors, due to the 
numerical errors incurred in the calculation of very small numbers. These errors are 
easily spotted; they lead to large uncertainties in the results, which can nevertheless 
be reliably quantified. The  ‘two-slope’ behaviour described above highlights another 
source of error which is not so easily identified: it is indeed quite possible, if small 
probabilities are lost for all but the finest partition (or altogether), to obtain spurious 
results with very small numerical errors. This can happen very easily if only small 
clusters are considered. 

Our measurements of the slopes were performed by least-squares fit to the regions 
of straight line superposition. Initially measurements were also done ‘by eye’ and 
compared with the least-squares fit to ensure reliability and eliminate spurious results. 
In practice this resulted in the elimination of the two points corresponding to the  finest 
and the two points corresponding to the coarsest resolutions, for all cases with q > 0.5. 
When q < 0.5, four points at the coarsest resolutions had to be disregarded, due to 
the two-slope behaviour discussed above. We checked that the results for q > 0.5 were 
insensitive to discarding either two or four points a t  the coarsest resolutions. Our 
choice of points is designed to eliminate spurious results related to local behaviour 
(finest resolutions) or finite-size effects (coarsest resolutions). The  values o f f  and a 
obtained are shown in table 1. In table 2 we compare our results with earlier ones, 
for some selected values of q.  Figure 4 shows the f(a) curve; a few representative 
error bars are shown, which reflect the deviation from linearity of da ta  obtained from 
different clusters and are not strictly statistical errors. 

Some of the  results for negative q can be improved by increasing the amount 
of reliable da ta  for very small probabilities, i.e. by getting better statistics with 
reasonably large clusters. This is certainly feasible with the present method and should 
be sufficient to produce a noticeable improvement a t  least in the  part of the f(Cr) curve 
where f > 0. Results which give f < 0 do  not have a clear physical interpretation, 
given tha t  we have not measured a large sample of clusters. Our results suggest the 
presence of a systematic error in the region around amax: f ( a )  seems to reach a lower 
negative bound and then oscillate around f(a) = 0. 

Our clearest numerical result is the reinforcement o f f  = D a t  q = 0. The  corre- 
sponding value of a is higher than values reported in the literature. Previous work 
has given widely differing values of cro: for example a,  - 2.4 (Amitrano et a1 1986), 
a. = 2.97 f 0.04 (Ohta  and Honjo 1988), up to a. - 4.0 (Hayakawa e t  a1 1987). We 
find a. = 4.49 f 0.1 and we believe tha t  other studies simply lost precision at the  top 
of the f ( a )  curve. Our da t a  for positive q is corroborative; for negative q we doubt 
whether the  earlier studies (which failed even a t  q = 0) can be greatly trusted to 
contribute even the first few values with any real error estimate. 
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Table 1. Values of f ( q ) ,  a(q) and ( q  - l)D(q), obtained by least-squares fit to the 
curves ( lnp)Q, (1nQ)Q and In M ,  against ln(b/R). Data from 10 clusters of 10000 
to 100000 are used. 

5 .O 
4 .O 
3.0 
2.0 
1 .o 
0.5 
0.4 
0.3 
0.2 
0.15 
0.1 
0.05 
0.0 

-0.02 
-0.04 
-0.06 
-0.08 
-0.10 
-0.14 
-0.18 
-0.20 
-0.25 
-0.30 
-0.34 
-0.38 
-0.40 
-0.45 
-0.50 
-0.80 
-1.0 

0.60 f 0.04 
0.62 f 0.04 
0.66 f 0.04 
0.74 f 0.04 
0.97 f 0.04 
1.40 f 0.05 
1.58 f 0.05 
1.87 f 0.05 
2.34 f 0.06 
2.70 f 0.08 
3.13 f 0.08 
3.72 f 0.09 
4.49 f 0.1 
4.93 f 0.2 
5.37 f 0.2 
5.85 f 0.3 
6.38 f 0.3 
6.95 f 0.4 
8.19 f 0.5 
9.33 f 0.6 
9.95 f 0.8 

11 .3f  1.0 
12.2 f 1.2 
12.7 f 1.2 
13.1 f 1.2 
13.2 f 1.2 
13.4 f 1.2 
13.65 1.2 
13.8 f 1.2 
13.9 f 1.2 

0.22 f 0.06 
0.33 f 0.05 
0.47 f 0.04 
0.66 f 0.03 
0.97 f 0.03 
1.27 f 0.03 
1.35 f 0.03 
1.45 f 0.03 
1.56 f 0.03 
1.63 f 0.03 
1.68 f 0.03 
1.73 f 0.03 
1.75 f 0.04 
1.74 f 0.04 
1.73 f 0.04 
1.70 f 0.04 
1.66 f 0.06 
1.61 f 0.06 
1.46 f 0.08 
1.27 f 0.08 
1.15 f 0.10 
0.85 f 0.14 
0.59 f 0.18 
0.44 f 0.18 
0.31 f 0.20 
0.26 f 0.20 
0.176 0.20 
0.10 f 0.20 

-0.07 f 0.20 
-0.10 f 0.20 

2.80 f 0.06 
2.18 f 0.05 
1.53 f 0.05 
0.83 f 0.05 
0.97 f 0.03 

-0.57 f 0.03 
-0.72 f 0.03 
-0.89 f 0.03 
-1.09 f 0.03 
-1.23 f 0.03 
-1.375 0.03 
-1.55 f 0.03 
-1.75 f 0.04 
-1.84 f 0.04 
-1.95 f 0.06 
-2.05 f 0.06 
-2.17 f 0.08 
-2.31 f 0.08 
-2.61 f 0.10 
-2.95 f 0.10 
-3.14 f 0.20 
-3.68 f 0.20 
-4.25 f 0.40 
-4.76 f 0.40 
-5.28 f 0.50 
-5.54 f 0.90 
-6.20 f 0.9 
-6.90 f 0.9 
-10.9 f 1.0 
-13.7 f 1.0 

Table 2. (b) 
Amitrano e t  al  1986; (c) Hayakawa e t  al 1987; (d) Ohta and Honjo 1988; (e) Meakin 
1988; ( f )  Halsey e t  al 1986. 

Comparison between our results (a) and earlier ones, as follows: 

a(m) 0.59f0.04 -0.7 0.644.70 0.60f0.04 

4 0 )  4.49f  0.1 -2.4 -4.0 2.97 f 0.04 
1.75 f 0.04 -1.71 1.64 f 0.01 1.63 f 0.01 1.713 f 0.004e 
0.97 f 0.04 1.04 f 0.01 1.13 f 0.02 

CX(-CO) -14.0 -8.9 -9.0 9.4 f 0.02 

f ( 0 )  
D1 
2 0 3  1.54 f 0.08 1.712 f 0.01' 

The new method used here for the calculation of the Laplace field and of the 
f(a) spectrum has been thoroughly tested in two different ways. First we used i t  t o  
calculate known f ( a )  spectra of simple non-fractal objects on a square lattice. These 
objects were chosen for their simplicity and in order t o  test different features of the 
spectrum separately; they are: 
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Best fit from 10, 30, 50 ond 100 K 
2 0 1 "  " " " " " " " " "1  

-05  
0 5 10 "I 5 20 

a 

Figure 4. Graph of f against a, obtained by scaling superposition of data from 
10 different clusters of sizes ranging from 10000 to 100000 particles. The error 
bars repreent the standard deviation of the least-squares fit for a few representative 
points. The inset shows the curve obtained by drawing a segment of slope q at each 
point ( f  ( P I 7  4 9 1 ) .  

(1) a square; 
(2) a concave quadrangle, in the shape of a symmetric arrow, with outer angles a t  

the sharpest tips given by ,f? - 27r - 0.32175055 and an angle y = 7r - 2 cos-'(2/&) - 
2.2142974 inside the single 'fjord'; 

(3) and (4)  a circle with two equal narrow sectors removed, the two different cases 
corresponding to a choice of the inner angle y given by y 2: 0.3490659 or y N 0.2243996, 
which produce amax = 9 and a,,, = 14, respectively. 

The  results of these tests are given in table 3 and figure 5 shows the f ( a )  spectrum 

Table 3. Values of f ( q )  and a(q) for the four test objects described in the text. Here 
the predicted values are compared with those obtained using three different methods. 
Method Mi: X = 03, E = 1; method Mz: X = 1, E = 1; method M3: X = m, E = 0.6. 

~~ ~~ ~~~ ~ ~~~~~~~ 

Method 

Object Variable Predicted M I  MZ M3 

square 
(723x723) 

Arrow 
(21 360 sites) 

Circle 
(y N 0.3490659) 

Circle 
(y N 0.2243996) 

1 
1 
213 
1 .o 
1 .o 
0.527 
1.42 

1 .o 
9.0 

1 .o 
14.0 

0.99 0.99 1.00 
1 .oo 0.99 1.00 
0.66 0.66 0.66 

0.99 0.99 0.99 
0.99 0.98 0.98 
0.52 0.52 0.52 
1.44 1.46 1.48 

1.06 1.06 
9.5 9.1 

1.12 1.12 
14.5 13.5 
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t 

t 
-0. , , . , I , ,  , .  I , I  , .  I , " '  

0 0.5 1.0 1.5 2.0 
a 

Figure 5. The f(a) curve for test object 2 (arrow). The exact curve is shown 
by the full line, and compared with results obtained with three different methods: 
+, = CO,€ = 1 (Ml); *, = I , &  = 1 (MZ); 0, = 00,c  = 0.6 (M3). 

for object 2. All the results except one agree with the predicted values within 5% or 
better. 

A second test was carried out by using different methods for the numerical solution 
of the Laplace equation. For this test we used a 'relaxation' method, whereby the 
boundary conditions on the cluster are redefined, making it absorbing (method M2),  
and a 'retarded relaxation' method which leaves the boundary conditions unchanged 
- (method M3). In M2 the flux Ji on a cluster site i is given by Ji = &- +i = where 
+i is the average of the Laplace field over nearest neighbours and X is a parameter 
which we took equal to  1. In the limit X + 03 this method is equivalent to the one 
used in section 3 (method MI).  In M3 the iterative procedure leading to  the value of 
the Laplace field on a cluster site i is defined as +ytl = @(1 - E )  + E@. The value 
E = 0.6 was chosen in order to keep the computer code as simple as possible, even 
though it made the convergence worse and we had to increase the number of iterations 
in order to have results comparable to those obtained with the other methods. When 
E = 1 this method is equivalent to M i .  The correspondence between all methods is 
given by 

X = w ,  & = l  for method M i  

X = l ,  E = l  for method M2 

X = CO, E = 0.6 for method M3. 

A different value of X involves a different renormalization, while a different value of E 

involves a different relaxation of the solution, so M2 and M3 each serve as a test for 
different kinds of systematic errors. 

We compared these methods in five cases: the four objects described above, with 
known j ( a )  spectrum, (see table 3) and a medium-sized (50000 sites) DLA (see ta- 
ble 4).  Results for the first four objects should be, in theory, exactly the same, while 
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Table 4. Comparison of selected results for a 50000 sites DLA, obtained using three 
different methods. Method MI: X = 00, E = 1; method MP: X = 1, e = 1;  method 
M3: = 03, E = 0.6. 

Method 

MI MZ M3 

j ( q  = 0) 1.76 1.76 1.76 
a(q = 0) 4.73 4.26 4.72 
j ( q  = 1) 0.98 1.00 0.98 
a(q = co) 0.59 0.58 0.59 

2 0 3  1.58 1.60 1.58 
a(q = -CO) 14.0 10.0 14.0 

for a DLA cluster there is an  inherent difference deriving from our computer code, 
which results in completely screened sites being treated as cluster sites in method 
M2. In the example chosen for this test the percentage of completely screened sites is 
N 4.2% and should not affect the results. 

In the part of the f(a) spectrum corresponding to q 2 0 we found extremely good 
agreement between the results obtained with the three methods in all cases. When 
q < 0 there is still fairly good agreement between the results for the four test objects 
listed above, but this breaks down completely in the case of the DLA, where the curves 
obtained by methods using a different renormalization depart considerably from each 
other after q = -0.1. The  main observations that can be made for the DLA can be 
summarized as follows. 

Firstly, we note tha t  f(a) = 1.76 a t  q = 0 with all methods, confirming the 
reliability of our results at the top of the curve. 

Another result we want to point out is amin N 0.58. There exist theoretical 
predictions for the value of amin, based on scaling arguments and on assumptions 
about the distribution of growth probability (Turkevich and Scher 1985). As the 
extremal radius Rex, of a cluster only increases when new growth occurs at the 
tips, the average rate of increase of Rex, is given by (dRext /dN)  x hpltip (Ball 
and Witten 1984). From the scaling law N - RD and the power law dependence 
ptip x (b/ReXt)"'ip (see equation (5)),  we find 0 = 1 + atip. It  is generally accepted 
that atip = amin, i.e. the tips are the most active sites, giving the relationship 
D = 1 + amin, but this is not necessarily the case (Blunt 1990). We have made checks 
for the occurrence of this behaviour by locating the site with maximum growth prob- 
ability pmax in all the clusters included in our  calculations. We found that the site 
with p = pmax almost never coincides with the extremal tip of the cluster. Therefore 
we have ptip 5 pmax and the more general relationship 0 2 1 + amin applies. 

We also find 1.58 < 2 0 ,  < 1.60, i .e 2 0 ,  < f ( O ) ,  which is at variance wit8h previous 
predictions (Turkevich and Scher 1985, Halsey 1987). This is more difficult to explain. 
The  linear fit for all positive values of q is particularly good, with average errors of less 
than 2%, and the case q = 3 is no exception, as can be seen in figure 6. Here, as in all 
other slope calculations, the first two (finest resolutions) and last two points (coarsest 
resolutions) are not included in the linear fit. We believe this choice eliminates local 
and finite-size effects, as discussed above. Nevertheless a higher value of 2 0 ,  cannot 
be completely excluded: for comparison a line of slope 1.7 (broken line) has also been 
drawn on the same graph in figure 6. It  should be noted, however, t ha t  the  values 
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we obtain are always lower than predicted by the theory, for all clusters considered 
and whatever the  method used to  solve the Laplace equation, which suggests the 
possibility of some other source for this discrepancy, not connected with the Laplace 
solver. This seems to be confirmed by the structure shown on the q positive side of 
the f ( a )  spectra for our simple test cases (see figure 5) .  

q = 3 0  q - 3 0  

Lnl b/RI In(  b/P, I 

Figure 6. Detelmination of .(q) = ( q  - l ) D q ,  in the case q = 3, from plots of lnMp 
against ln(b/R). Here we compare the graphs obtained with R = N' In  and R = R,. 
The broken line has slope 1.7,  and is shown here for comparison. 

Finally, we must stress the considerable disagreement obtained for the part of the 
spectrum corresponding to negative values of q .  As mentioned above, results from 
different methods diverge for q 5 -0.1. In particular we find a,,, - 10 with method 
M2 and a,,, - 14 with method M i  and M3,  all with errors of the order of *1.0. 
All the values reported in the literature for DLA clusters are much lower: typical 
results are amax 9 (Hayakawa e t  a1 1987), amax = 9.4 & 0.2 (Ohta and Honjo 
1988), amax - 8.9 (Amitrano e t  a1 1986). \Ire described above our tests on objects 3 
and 4, with a predicted amax of 9 and 14 respectively, and reported agreement for all 
methods. 

The  problem with method M2 a t  negative q is that  it allows flux to cross arms of 
the cluster. As it does so only with strong screening, we originally anticipated tha t  this 
would make little difference. The  fact that  it does has interesting implications, in tha t  
it suggests tha t  there are backbones in the structure which separate regions of quite 
different measure (see also Mandelbrot 1990). This in turn raises some doubts about 
box-based definitions of f(cr), which assume local spatial correlation of the measure. 

The  non-crossing const,raint is a feature special to two dimensions, which suggest 
tha t  in any search for continuous trends with dimensionality it is the M2 results which 
are relevant. They should also correspond, for example, t o  DLA growth with finite 
sticking probability and walkers allowed to cross cluster sites. This, of course, would 
imply tha t  f(a) for q < 0 is much less universal than other scaling exponents. 

4. Conclusions 

We have calculated the f(a) spectrum of a DLA by using a good sample of medium- 
sized clusters, and we have tested our calculations thoroughly. Our results in the range 
of q positive agree very well with the literature, with the exceptions discussed above. 
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The discrepancy found for 20, might be connected to  the relatively small size of 
clusters and the limitations of a square lattice. Preliminary results for a 700,000 sites 
cluster confirm the values obtained with smaller clusters amin - 0.58 and f(0) = 1.75, 
but give ( q  - 1)D, = 1.68 a t  q = 3. This single result, though, is not statistically 
significant and more work is needed. 

We believe our different results for q < -0.1 highlight a non-universality in f ( a )  in 
this region in two dimensions, associated with whether strict non-crossing constraints 
are imposed. 

Two principal sources of errors affect the type of calculation carried out here. One 
is the necessarily finite size of the system, the other is the accuracy in the calculation 
of the growth probability. To some extent the errors arising from these limitations 
can be reduced by improving the statistics. Nevertheless, if the clusters involved are 
medium-sized a greater number of realizations will only improve errors for q 2 0. 
Errors for negative values of q can only be improved by using very large clusters, and 
in addition are always inevitably greatly affected by numerical accuracy. 
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